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3 Hardware

The displays in the hyperwall are 18” Samsung 181T flat panel
monitors. Each LCD is framed by a uniform black plastic bezel
approximately 3/4” in width. A custom designed mounting rack
allows pitch and yaw adjustment of each monitor, as well as trans-
lational adjustment between rows and columns. In addition, each
monitor can be moved independently up to 14” in “z” - perpendic-
ular to the frame - to allow nonplanar arrangements of the viewing
surfaces - for example spherical or paraboloid sections. We de-
signed the rack to provide all these degrees of freedom in order to
compensate for the directionality in the monitors, and to accommo-
date different viewing distances. In practice, the Samsung monitors
deliver well on their promised 170 degree omnidirectional field of
view, so a wide range of adjustments is effective. Figure 1 shows a
mechanical drawing of the mounting system.

Each display is driven directly by an nVidia GeForce 4 Ti4600
graphics card, at 1280 � 1024 resolution. The aggregate pixel
count for the entire display matrix is thus 7 � 7 � 1280 � 1024
= 64,225,280 = 64 M pixels.

Each graphics card is housed in a dual-CPU AMD Athlon
MP2000+ rackmounted slave node. The slave nodes each have
a 100GB IDE disk, thus providing aggregate storage of approxi-
mately 5TB. The slaves are driven by a similarly configured master
node, and all communication is via Fast (100 BaseT) Ethernet, co-
ordinated by a pair of Cisco Catalyst 2950 G-48-EI switches.

4 Software Infrastructure

We are running a standard Red Hat Linux 7.3 installation on
the master and on each of the slave nodes. We use SystemIm-
ager (sourceforge.net/projects/systemimager) to maintain consis-
tent slave node configurations. Slave nodes communicate with the
master on an internal Ethernet interface, with names and IPs being
assigned by the master via DHCP at slave boot time. In addition,
the master exports several of its filesystems, which are mounted by
the slaves using NFS.

We can run many standalone X Window System event-driven
applications virtually unchanged as hyperwall SPMD applications
using the simple ploy of replicating mouse and keyboard events on
the master and broadcasting them to the slaves. We specialize the
input data for each slave node using script-generated symbolic links
to data in the globally accessible NFS. The X event-cloning mech-
anism is remarkably effective at exposing data-dependent behavior
in client programs - for example, incremental rotation schemes that



are affected by rendering frame rates cause rapid desynchronization
of scenes with differing numbers of polygons.

Applications that are designed to support collaboration are
promising hyperwall candidates. We have one such application
that exchanges script commands to coordinate multiple interacting
views. In the hyperwall instantiation, the operator drives one copy
of the analysis tool on the master node, which broadcasts script
commands to copies of the program running on each of the slave
nodes.

For controlling true MPMD applications, we use a distributed
object framework with a robust signal/slot event service, the details
of which are outside the scope of this report.

For any of the schemes discussed above, there is the general issue
of mapping and distributing datasets onto the slave nodes, either on-
demand via NFS or some other global file system scheme, or as a
prestaging phase. Determining the layouts and mechanisms of data
distribution that support desired access patterns is a subject we are
presently investigating.

5 Applications

The tabular layout of the hyperwall supports many existing “mul-
tiview” visualization paradigms, including spreadsheet-style ap-
proaches [2, 3], multidimensional/multivariate techniques [4, 5],
and brushing/linking [6, 7]. Hyperwall versions of these tech-
niques benefit from the dual-CPU and graphics subsystem devoted
to each view, and this same feature allows us to extend these tech-
niques from a postprocessing scenario to “concurrent analysis” -
i.e., each view is connected directly to an ongoing simulation or
other compute-intensive application.

The hyperwall is obviously well-suited for parameter studies.
For instance, one can visualize a 2D parameter study of airfoils with
7 different cambers and 7 different thicknesses, all 49 combinations
running the same 2D compressible flow code.  As the Mach num-
ber is increased across all simulations, one can see where in the
design space effects such as separation or vortex shedding first oc-
cur. One can zoom and pan in such a 2D parameter space by sim-
ple reassignment of the slave nodes. Higher-dimensional parameter
spaces can be explored using 2D cuts.

Or one can investigate a single airfoil showing combinations of
various dynamical variables with various visualization techniques
and parameters. For instance, one can plot energy, density, mo-
mentum, pressure, temperature, and so forth across the rows of the
hyperwall, while distributing streamlines, contours, volume render-
ing, colormaps and viewing angles across the columns. The result-
ing combinatoric array of visualizations permit side-by-side com-
parison and allow the user to choose the most effective means of
interrogating and presenting a feature of interest. Figure 2 shows a
related example using the Space Shuttle main engine liquid hydro-
gen turbopump.

We have used the hyperwall to visualize the three dimensional
electrostatic potential for a “complete” array of small 2nd row hy-
dride molecules at equilibrium geometry, and the quantum potential
for a one-parameter sequence of ethylene molecules undergoing pa-
rameterized out-of-plane bond deformation. We have visualized the
results of a meso-scale atmospheric dynamics simulation, display-
ing related 3D scalar fields simultaneously, each on its own display.
In all of these cases, changes due to, e.g. viewing angle, trans-
fer function (for volume visualization) or contour level (for isosur-
faces) specified interactively by the master are simultaneously and
independently computed, rendered, and displayed by the slaves.

The hyperwall shows particular promise for exploring high-
dimensional data. A 2D array of “3D” graphics scenes portrays
5 dimensions rather explicitly. We are currently attempting to pro-
vide a tool for interactively exploring the 6-dimensional electronic
pair density function calculated for small molecules. If we sample

this space at 128 points along each side of a 6D hypercube, we will
generate 4.4 trillion datapoints - which can just fit on the aggregate
disk of the hyperwall, at 8-bit resolution. If we constrain things so
that each display reads only from its set of 42,799 2MB datasets,
then successive sets of 49 ������� “slices” can be displayed at about
10 Hz, permitting “structured browsing” of a hitherto intractable
dataset.
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Figure 1: Mechanical drawing of the display mounting system.
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Figure 2: Example of a 7 � 7 hyperwall display showing different visualizations and timesteps of a Space Shuttle main engine liquid hydrogen
turbopump CFD simulation.
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